Quantum effects in large molecule collisional energy transfer?

نویسندگان

  • Beatriz M. Toselli
  • John R. Barker
چکیده

Recently, Gilbert and Zare proposed that dynamical quantum effects might explain the poor performance ofclassical trajectory calculations in simulating the vibrational deactivation of excited azulene by the lighter noble gases. They proposed an experimental test: a comparison of 3He and 4He deactivation of azulene. In this Letter, the collisional deactivation of benzene, toluene and toluene-ds by ‘He and ‘He has berm investigated by infrared fluorescence to assess the importance of dynamical quantum effects. The results show that the proposed dynamical quantum effect is not important for these systems over the range of vibrational energies from x 8000 to ?5 35000 cm-‘.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The AIM, NBO thermodynamic, and quantum study of the interaction nitramide molecule with pristine, B, As and B&As doped of AlNNTs

In this work, by using density functional theory, the adsorption of Nitramide (NH2NO2) molecule on the surface of pristine, B, As and B&As doped (4,4) armchair aluminum nitride nanotube (AlNNTs) is investigated. From optimized structures the adsorption energy, deformation energy, natural bond orbital (NBO), atom in molecule (AIM), quantum parameters, reduced density gradient (RDG) and molecular...

متن کامل

Study of Nitro Factor Dislodgement in Fox-7

Since FOX-7 (1, 1-diamino-2, 2-dinitroethylene) is a relatively new energetic material, little is known about its physical and chemical properties. Therefore, first-principles quantum chemical calculations are used to predict the energies of atoms of FOX-7. Under gentle heating (thermolysis) is likely to cause hydrogen transfer between molecules, producing highly reactive chemical species. Conv...

متن کامل

Equivalence of the Ehrenfest theorem and the fluid-rotor model for mixed quantum∕classical theory of collisional energy transfer.

The theory of two seemingly different quantum∕classical approaches to collisional energy transfer and ro-vibrational energy flow is reviewed: a heuristic fluid-rotor method, introduced earlier to treat recombination reactions [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)], and a more rigorous method based on the Ehrenfest theorem. It is shown analytically that for the case of a d...

متن کامل

Frozen rotor approximation in the mixed quantum/classical theory for collisional energy transfer: application to ozone stabilization.

A frozen-rotor approximation is formulated for the mixed quantum/classical theory of collisional energy transfer and ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)]. Numerical tests are conducted to assess its efficiency and accuracy, compared to the original version of the method, where rotation of the molecule in space is treated explicitly and adiabat...

متن کامل

Collisional line shapes for low frequency vibrations of adsorbates on a metal surface.

The dynamics of atoms or molecules adsorbed on a metal surface, and excited by collisions with an atomic beam, are treated within a theory that includes energy dissipation into lattice vibrations by means of a frequency and temperature dependent friction function. The theory provides dynamic structure factors for energy transfer derived from collisional time correlation functions. It describes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005